Abstract
The paper investigates heat transfer in annular laminar undisturbed flow of two immiscible liquids, with constant heat-flux generated at the wall of the tube. It presents an analytical solution for the fully developed temperature field. This is used to obtain a more general solution from a model, describing the temperature field as a superposition of the fully developed and the developing fields. This superposition model is solved by an orthogonal collocation method. An asymptotic model for short entry lengths is also described. Calculations for a kerosene-water system, show that the superposition solution converges to the entrance solution below 100 diameters and converges asymptotically to the solution of the fully developed temperature field beyond 5000 diameters. The effect of the wavy interface is assessed experimentally for annular kerosene-water flow, by comparing predicted and measured temperature profiles. It is found that experimental profiles are considerably flatter and measured Nusselt numbers for the kerosene phase are accordingly higher by 40–320% as compared to the undisturbed flow analyses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have