Abstract

Heat transfer with turbulent flow over shrouded rectangular cavities are numerically investigated. The geometry studied models flow through the clearance gap at the grooved tip of an axial turbine blade, where the blade rotates in close proximity to a stationary outer ring or shroud. The direction of relative shroud motion is always in opposition to the direction of the gas flow across the blade tip. Heat transfer characteristics and flow pattern in a cavity are found to be strongly influenced by the dimension of gap clearance, cavity geometry, and relative shroud movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.