Abstract
The enhancement of heat transfer from a discrete heat source using multiple jet impingement of air in a confined arrangement was experimentally investigated. A variety of pin-fin heat sinks were mounted on the heat source and the resulting enhancement studied. Average heat transfer coefficients are presented for a range of jet Reynolds numbers (2000<Re<23000). Two jet-to-jet spacings were investigated and the results were compared to single jets of both the same orifice diameter and orifice area. A total fin effectiveness was computed for the pinned heat sinks relative to the unpinned ones, and was in the range of 3 to 6; the highest value was obtained for the largest nozzle diameter. Results for the average heat transfer coefficient were correlated in terms of Reynolds number, fluid properties and geometric parameters of the heat sinks and the orifice plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.