Abstract

Ni–W tapes of the micrometric thickness are considered as the basis for the cost-effective manufacturing of coated conductors – the 2nd generation of high-temperature superconductor (HTS). Many HTS applications involve widely-available and inexpensive liquid nitrogen. The transition from superconducting to normal state may however occurs due to unexpected temperature fluctuations. In this case Ni–W tape is significantly heated by electrical current propagating through it. The amount of heat transferred from the tape to coolant is defined by heat transfer from the surface of tape to liquid nitrogen. The heat transfer, in turn, is strongly dependent on the tape orientation in the field of gravity. The present paper reports the experimental results on the heat transfer from Ni–W tape to a pool of liquid nitrogen. The heat transfer coefficients are quantified for three subsequent heat transfer regimes: natural convection of liquid nitrogen, nucleate boiling regime and film boiling. The dependence of heat transfer coefficient on inclination angle of the tape from vertical are experimentally clarified for each regime. The expression for the heat transfer coefficient at different inclination angles is derived for the case of nucleate boiling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call