Abstract

High-power light emitting diode (LED) modules offer several advantages over conventional light sources, but require effective thermal management for optimal performance, such as liquid cooling or thermoelectric cooling (TEC). This study compared the thermal performance of high-power LEDs with liquid cooling and TEC using both the finite element method and experiments. We considered a mutichip module in which the LEDs are immersed in one of three different cooling fluids in a metal enclosure with passive cooling or a TEC module. In the experiments, temperatures were measured by thermocouples. The temperature and flow fields of the liquid-cooled package inside the enclosure were analyzed in detail using a numerical model, and the results were validated against the experimental measurements. In this paper, we discuss the major design considerations when using liquid cooling and TEC. Our results show that for the illumination module considered in this study, appropriate heat sink design is crucial to optimizing performance with TEC, which can enhance the heat dissipation for small and compact LED modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call