Abstract
In the fusion reactor, the conducting liquid metals usually work in an environment of large temperature differences and strong magnetic field. The flow driven by the interaction of the Seebeck effect and magnetic field enlightens a promising approach to enhance heat transfer under strong magnetic field. Liquid metal thermal convection affected by the Seebeck effect and magnetic field is simulated using the partitioned iteration algorithm with liquid lithium as working fluid. It is found that the Seebeck effect can change energy transport pattern and greatly improve the heat transfer efficiency under strong magnetic field. With the increase of magnetic field intensity, the flow changes from steady vertical circulation to unsteady horizontal circulation and finally to steady horizontal circulation. The flow regime diagram based on the two dimensionless parameters, Gr / Te and Ha 2 / Te , can reflect the characteristics of different energy transport patterns. The flow generated by the Seebeck effect is most remarkable when O Ha 2 / Te ≈ 1 . The Nusselt numbers at different flow regimes show that the Seebeck effect can enhance the heat transfer efficiency of liquid metal under strong magnetic field about 50% and 90%, respectively, under different Glashof numbers.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have