Abstract

A numerical simulation has been carried out to investigate the heat transfer enhancement in a shell-and-tube heat exchanger using a porous medium inside its shell and tubes, separately. A three-dimensional geometry with k-ϵ turbulent model is used to predict the heat transfer and pressure drop characteristics of the flow. The effects of porosity and dimensions of these media on the heat exchanger's thermal performance and pressure drop are analyzed. Inside the shell, the entire tube bundle is wrapped by the porous medium, whereas inside the tubes the porous media are located in two different ways: (1) at the center of the tubes, and (2) attached to the inner wall of the tubes. The results showed that this method can improve the heat transfer at the expense of higher pressure drop. Evaluating the method showed that using porous media inside the shell, with particular dimension and porosity can increase the heat transfer rate better than pressure drop. Using this method inside the tubes leads to two diverse results: In the first configuration, pressure loss prevails over the heat transfer augmentation and it causes energy loss, whereas in the second configuration a great performance enhancement is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.