Abstract
The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube fitted with helical twist inserts under constant heat flux has been explained using Fluent version 6.3.26 in laminar flow. Al 2O 3 nanoparticles in water of 0.5%, 1.0% and 1.5% concentrations and helical twist inserts of twist ratios 2.93, 3.91 and 4.89 has been used for the simulation. All thermophysical properties of nanofluids are temperature dependent. The heat transfer enhancement increases with Reynolds number and decreases with twist ratio with maximum for the twist ratio 2.93. By comparing the heat transfer rates of water and nanofluids, the increase in Nusselt number is 5%–31% for different helical inserts and different volume concentrations. The maximum heat transfer enhancement is 31.29% for helical insert of twist ratio 2.93 and for the volume concentration of 1.5% corresponding to the Reynolds number of 2039. The data obtained by simulation match with the literature value of water with the discrepancy of less than ±10% for plain tube and tube fitted with helical tape inserts for Nusselt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.