Abstract

Heat transfer behaviors of AZ80–1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.