Abstract

Pressure drop, heat transfer, and energy performance of ZnO/water nanofluid with rodlike particles flowing through a curved pipe are studied in the range of Reynolds number 5000 ≤ Re ≤ 30,000, particle volume concentration 0.1% ≤ Φ ≤ 5%, Schmidt number 104 ≤ Sc ≤ 3 × 105, particle aspect ratio 2 ≤ λ ≤ 14, and Dean number 5 × 103 ≤ De ≤ 1.5 × 104. The momentum and energy equations of nanofluid, together with the equation of particle number density for particles, are solved numerically. Some results are validated by comparing with the experimental results. The effect of Re, Φ, Sc, λ, and De on the friction factor f and Nusselt number Nu is analyzed. The results showed that the values of f are increased with increases in Φ, Sc, and De, and with decreases in Re and λ. The heat transfer performance is enhanced with increases in Re, Φ, λ, and De, and with decreases in Sc. The ratio of energy PEC for nanofluid to base fluid is increased with increases in Re, Φ, λ, and De, and with decreases in Sc. Finally, the formula of ratio of energy PEC for nanofluid to base fluid as a function of Re, Φ, Sc, λ, and De is derived based on the numerical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call