Abstract
A numerical investigation was carried out to characterize the thermal performance of finned metal foam heat sinks subject to an impinging air flow. The main objective of the study was to quantify the effects of all relevant configurational parameters (channel length, channel width, fin thickness, and fin height) of the heat sink upon the thermal performance. Open-cell aluminum foam having fixed porosity of 0.9118 and fixed pore density of five pores per inch (PPI) was used in the study. A previously validated model based on the porous medium approach was employed for the numerical simulation. Various simulation cases for different combinations of channel parameters were carried out to obtain the Nusselt number correlation. Based on the inviscid impinging flow, a pressure drop correlation was derived for impinging flow in finned metal foam heat sinks. By using these correlations, the thermal performance of finned metal foam heat sinks was compared with the conventional plate-fin heat sinks. It was demonstrated that the finned metal foam heat sinks outperformed the plate-fin heat sinks on the basis of given weight or given pumping power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.