Abstract

There is an increasing trend of using tubular reactors either with passive or active augmentation methods for process intensification. A new passive method with ‘pinching of pipe’ is proposed and investigated for its performance. In the present work, initially, flow in a pinched pipe was studied experimentally and the same was reproduced numerically. The computational model was then used to investigate influences of key geometrical parameters of pinched pipe configuration on pressure drop, heat transfer, and mixing. The simulated results obtained with the pinched pipe were compared with a straight pipe, and with a commonly‐used passive augmentation method (twisted tape inserts). The pinched pipe configuration offers better performance and more flexibility in manipulating heat transfer and mixing in intensified devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.