Abstract
In the present investigation, heat transfer and hydrodynamics analysis of a new enhanced heat transfer tube with ellipsoidal dimples was carried out. The dimples are disposed to form a certain specified angle between the major axis of the ellipsoid and flow direction, and the direction of the major axis of each adjacent ellipsoidal dimple in the same cross-section is alternated. Experimental tests were carried out with heating water on the shell side with a constant flow rate, and cold air in the tube side with flow rates range from 1 to 55 m 3/h. The temperatures and pressures for the inlet and outlet of both sides were measured. The heat transfer and pressure drop of the new dimpled tube were investigated and compared with the results of a dimpled tube with spherical dimples and a conventional smooth tube. The computed results indicated that the Nusselt number for ellipsoidal dimpled tube and spherical dimpled tube are 38.6–175.1% and 34.1–158% higher than that for the smooth tube respectively. The friction factors of dimpled tube increase by 26.9–75% and 32.9–92% for ellipsoidal and spherical dimples compared with the smooth tube respectively. It was perceived that ellipsoidal dimple roughness accelerates transition to critical Reynolds numbers down to less than 1000. By integrated performance evaluation of ( Nu a/ Nu s)/( f a/ f s), a maximum of about 87% heat transfer enhancement with the same friction penalty could be achieved by optimize the dimpled tube design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.