Abstract

Abstract Heat transfer enhancement is an important factor in obtaining energy efficiency improvements in all heat transfer applications. A numeric study was performed that compares the performance of heat exchangers using the Vipertex enhanced heat transfer tubes (model 1EHT) to the performance of heat exchangers that use smooth surface tubes and other enhanced tubes. Surface enhancement of the 1EHT tube is accomplished through the use of the primary dimple enhancement and a secondary background pattern made up of petal arrays. Utilization of enhanced heat transfer tubes is an effective method that is utilized in the development of high performance thermal systems. Vipertex™ tubes, have been designed and produced through material surface modifications that produce flow optimized heat transfer tubes that increase heat transfer performance. Current energy demands and the desire to increase efficiencies of systems have prompted the development of optimized enhanced heat transfer surfaces. Enhanced heat transfer tubes are widely used in many areas (refrigeration, air-conditioning, process, petrochemical, chemical, etc.) in order to reduce cost, create a smaller application footprint or increase production. A new type of enhanced heat transfer tube has been created; therefore it is important to investigate relevant heat exchanger designs using the Vipertex enhanced surface tube in industrial applications and compare that performance to smooth tubes and other enhanced tubes. Results include design characteristics and performance predictions using the design simulations produced using HTRI Exchanger Suite (2016). Performance for all cases considered using the Vipertex tube predicted over design when compared to a smooth tube design. Vipertex 1EHT tubes produced enhanced heat transfer and cost efficient designs. In some of the case studies the 1EHT tubes produce an overdesign that is more than 35%, while smooth tubes produce an underdesign and other low fin tubes produce overdesign but not as large as the 1EHT tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call