Abstract
The subcooled boiling heat transfer and the steady state critical heat fluxes (CHFs) in a short SUS304-tube with twisted-tape insert are systematically measured for mass velocities (G=4016–13,950 kg/m2 s), inlet liquid temperatures (Tin=285.8–364.0 K), outlet pressures (Pout=764.8–889.0 kPa), and exponentially increasing heat input (Q=Q0 exp(t/τ) and τ=8.5 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304 test tube of inner diameter (d=6 mm), heated length (L=59.5 mm), effective length (Leff=49.1 mm), L/d(=9.92), Leff/d(=8.18), and wall thickness (δ=0.5 mm) with average surface roughness (Ra=3.89 μm) is used in this work. The SUS304 twisted-tape with twist ratios y[=H/d=(pitch of 180 deg rotation)/d] of 2.39, 3.39, and 4.45 are used. The relations between inner surface temperatures and heat fluxes for the SUS304-tubes with various twisted-tape inserts are explored for different flow regimes ranging from single-phase flows to CHF. The subcooled boiling heat transfers for SUS304-tubes with various twisted-tape inserts are compared with authors’ empty SUS304-tube data and the values calculated by authors’ and other workers’ correlations for the subcooled boiling heat transfer. The influences of the twisted-tape insert, the twist ratio, and the swirl velocity on the subcooled boiling heat transfer and the CHFs are investigated into details, and the correlations of the subcooled boiling heat transfer and the CHFs for turbulent flow of water in the SUS304-tubes with twisted-tape inserts are given based on the experimental data. The precision or accuracy of a more widely set of correlations in predicting the present set of data is evaluated. The correlations can describe the subcooled boiling heat transfer coefficients and the CHFs obtained in this work from −25% to +15% difference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have