Abstract

The flow of a magnetite-H2O nanofluid has been considered among two rotating surfaces, assuming porosity in the upper plate. Furthermore, the lower surface is considered to move with variable speed to induce the forced convection. Centripetal as well as Coriolis forces impacting on the rotating fluid are likewise taken into account. Adequate conversions are employed for the transformation of the governing partial-differential equations into a group of non-dimensional ordinary-differential formulas. Numerical solution of the converted expressions is gained by means of the shooting technique. It is theoretically found that the nanofluid has less skin friction and advanced heat transport rate when compared with the base fluid. The effect of rotation causes the drag force to elevate and reduces the heat transport rate. Streamlines are portrayed to reveal the impact of injection/suction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.