Abstract
Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equations for the thermal flux. Exact solutions in both cases of the (ABC) and (CF) derivatives for the dimensionless temperature and velocity fields are established by using the Laplace transform technique. Solutions for the ordinary case and some well-known results from the literature are recovered as a limiting case. Expressions for Nusselt number and Skin friction coefficient are also determined. The influence of the pertinent parameters on temperature and velocity fields are discussed graphically. A comparison of ordinary model, and (ABC) and (CF) models are also depicted. It is found that memory of the physical aspects of the problem is well explained by fractional order (ABC) and (CF) models as compared to ordinary one. Further it is noted that the (ABC) model is the best fit to explain the memory effect of the temperature and velocity fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have