Abstract

The demand for new and/or improved herbaceous annuals and perennials continues to increase, making information on production and viability of these plants a necessity. In Louisiana and the Southern U.S., one of the greatest impediments to production of marketable herbaceous plants and their longevity is high temperature. Herbaceous plants have various stages of vegetative growth and flowering; high temperatures during these developmental stages can have a tremendous impact on plant metabolism, and thus plant growth and development. The goal of this research was to better understand the differences between heat tolerant (HT) and heat sensitive (HS) species and cultivars at various high temperatures in terms of whole plant growth, flowering, photosynthesis, carbohydrate content, electrolyte leakage, chlorophyll content and plant small heat shock proteins (HSP) expression levels. Salvia splendens Vista Series (HT), Sizzler series (HS); Viola witrokiana `Crystal Bowl Purple' (HT), `Majestic Giant Red Blotch' (HS), F1 Nature Series (HT) and F1 Iona Series (HS); Gaillardia × grandiflora `Goblin' (HT) and Coreopsis grandiflora `Early Sunrise' (HS) were grown from seed in growth chambers under 25/18 °C (day/night) cycles. Plants at 4, 6, and 8 weeks after germination were subjected to different high temperature treatments of 25 (control), 30, 35, 40, and 45 °C for 3 h. Results show that there was a significant difference in net photosynthesis, electrolyte leakage, soluble carbohydrate content and HSP levels between HT and HS cultivars. Effects of high temperature on plant growth, chlorophyll content, and number of days to flower, flower size, and marketable quality were also significantly different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.