Abstract

The reproductive phase of plants is highly sensitive to ambient temperature stresses. To investigate sensitivity of female reproductive organs in grass crops during the pollination phase, we exposed the elongated stigma (silk) of maize to ambient environment at the silking stage. Moderate heat stress causes cell death of silk hair cells but did not affect early pollen tube growth inside the silk. Late pollen tube growth arrest was observed, leading to sterility. Heat stress causes elevated levels of reactive oxygen species (ROS) in silks, whose levels can be reduced by scavengers partly restoring pollen tube growth and fertility. A number of biological processes including hydrogen peroxide catabolic processes and bHLH transcription factor genes are downregulated by heat stress, while some NAC transcription factor genes are strongly upregulated. In conclusion, this study now provides a basis to select genes for engineering heat-stress-tolerant grass crops during the pollination phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.