Abstract
Heat stress threatens the survival of seagrass, but its damage mechanisms are unclear. In this study, the results reveal that heat stress exceeding 36 °C in the dark caused inactivation of the PSII reaction center, damaging both the PSII donor and acceptor sides in Enhalus acoroides. High light further increased the damage to the photosynthetic apparatus under heat stress. The stronger the heat stress under high light, the harder the recovery of photosynthetic activity. Therefore, during ebb tide at noon in nature, heat stress combined with strong light would induce a significant, even irreversible decrease in photosynthetic activity. Moreover, the heat stress hindered the transcription of psbA and RuBisCO, enhanced respiratory O2, and induced severe peroxidation even if the SOD, APX, and GPX activities significantly improved. The results clearly suggest that heat stress, especially when coupled with high light, may be an important cause for the decline of E. acoroides meadows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.