Abstract

BackgroundAlthough the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C), during heat stress (43°C for 5 h), and through the following recovery period (25°C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated.ResultsSA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls.ConclusionSA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

Highlights

  • The effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of photosystem II (PSII) electron transport

  • Net photosynthesis rate (Pn), substomatal CO2 concentration (Ci) and stomatal conductance At normal growth temperature, spraying SA did not induce significant (P < 0.05) changes in Pn, Ci and gs in the grapevines (Fig. 1). When these plants were heat stressed at 43°C for 5 h, Pn and gssharply declined while Ci abruptly rose; the SA-treated plants had significantly higher Pn values than the controls (H2O + HT)

  • Our results showed that the increased thermostability of PSII induced by SA treatment was partly associated with an increase in the thermostability of the PSII center

Read more

Summary

Introduction

The effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. Plants have evolved a series of mechanisms to protect the photosynthetic apparatus against damage resulting from heat stress. When plants are subjected to heat stress, a small heat shock protein is expressed that binds to thylakoid membranes and protects PSII and whole-chain electron transport [12]. When plants are subjected to more severe stress, these protective mechanisms may be inadequate. Some growth regulators have been used to induce or enhance these protective functions [13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.