Abstract
Heat shock proteins (HSP) have been shown to participate in the antitumor T cell response. First, HSP play a crucial role in the intracellular pathway for antigen processing where HSP can make complexes with a broad spectrum of cellular proteins and peptides through their chaperone functions. In this pathway, macrophages are required for processing the chaperoned peptides to make stable molecules with the major histocompatibility complex (MHC) class I molecules, even when HSP-peptide complexes are exogenously administered. Through this pathway, vaccination with HSP-peptide complexes is thus able to elicit the response of CD8+ T cells specific for the chaperoned peptides. These findings suggest an essential role of HSP in 'cross-priming' and their usefulness for antitumor vaccination with tumor peptides. Second, HSP have been suggested to be expressed on the cell surface by transformation and, in addition, to function as antigen-presenting molecules for double negative T cells. Third, HSP derived from tumor cells have reportedly been recognized by T cells with either T cell receptor (TCR)-alphabeta or TCR-gammadelta. These lines of evidence therefore indicate that HSP may be potentially promising target molecules for antitumor T cell immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.