Abstract
The heat shock response was discovered by Ritossa and co-workers in 1962 when the exposure of Drosophila larvae to elevate temperature was observed to generate salivary gland polytene chromosome puffs, subsequently proven to reflect transcriptional induction of heat shock protein (Hsp) genes. Hsps, also referred to as stress proteins and molecular chaperones, normally account for 5-10% of total cellular protein, and they increasetwo or three times when cells are exposed to biotic and abiotic stressors [1]. Hsps occur in all living organism and they are categorized into several families based on function, sequence and molecular mass. Major Hsp families’ include Hsp110, Hsp100, Hsp 90, Hsp70, Hsp 60, and the small Hsps (sHsps), with the latter having a molecular mass less than 40 kDa. Constitutive and inducible Hsps, some of which are organelle specific, perform vital functions generally by interacting with exposed hydrophobic surfaces of nascent and stress-induced non-native proteins [2]. Hsps help other proteins find their correct three-dimensional configurations by keeping them in folding-competent, folded, or unfolded states assist protein localization to specific organelles, and target non-native or aggregated proteins for degradation and removal from the cell. In addition to stress resistance, Hsps are involved in animal and plant development, aging, environmental adaptation, and the immune response, demonstrating the fundamental importance of these proteins to cell survival [3].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have