Abstract

BackgroundThe high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies.Methods and FindingsIn this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06). Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA) can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production.ConclusionHsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future.

Highlights

  • Chikungunya virus (CHIKV), a mosquito borne arbovirus responsible for causing Chikungunya fever is transmitted mainly by Aedes species of mosquito

  • The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06, which will be informative for developing effective anti-CHIKV therapies in future

  • In this study an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain of 2006 (DRDE-06) as we reported earlier that the 2006 Indian outbreak strain exhibits different pattern of infection in comparison to the prototype strain [38]

Read more

Summary

Introduction

Chikungunya virus (CHIKV), a mosquito borne arbovirus responsible for causing Chikungunya fever is transmitted mainly by Aedes species of mosquito. The virus was identified 50 years back but recent emergence of CHIKV as massive outbreaks from 2005 onwards in different parts of Indian Ocean, Asia and South East Asian continents emphasizes the urgency to study the virus extensively. CHIKV is an enveloped positive sense single stranded RNA virus and the 11.8 Kb long genomic RNA encodes four non-structural (nsP1–4). Five structural proteins (capsid, E1 and E2 glycoproteins, 6 k and E3) [3,6,7]. The four non-structural proteins are involved in viral replication and transcription. The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.