Abstract

It has been reported that over-expression of human heat shock protein 27 (hsp27) in murine cells decreased the intracellular iron level [Arrigo, A. P., Virot, S., Chaufour, S., Firdaus, W., Kretz-Remy, C., & Diaz-Latoud, C. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signalling, 7, 412–422]. However, the mechanism involved is unknown. In this study, the regulation of transferrin receptor 1 (TfR1)-mediated iron uptake by human hsp27 was investigated in CCL39 cells by overexpression of human hsp27 and its dominant-negative mutant (hsp27-3G). The results showed that overexpression of hsp27 diminished intracellular labile iron pool, increased the binding activity of iron regulatory protein (IRP) to iron responsive element (IRE) and the cell surface-expressed TfR1s. However, the increased surface-expressed TfR1s resulted in decrease rather than increase of iron uptake. Further study revealed that overexpression of hsp27 decelerated transferrin endocytosis and recycling, while overexpressed hsp27-3G had a reversal effect. Moreover, flowcytometric analysis showed an enhanced actin polymerization in the cells overexpressing hsp27. In particular, fluorescence imaging of cytoskeleton displayed highly stabilized microfilaments and preferential localization of hsp27 in cortical area of the actin cytoskeleton. In contrast, disruption of actin cytoskeleton by cytochalasin B resulted in acceleration of the endocytosis and recycling of Tf, as well as increase of iron uptake. Meanwhile, the possible involvement of ferroportin 1 in down-regulation of intracellular iron level by overexpression of hsp27 was checked. However, the outcome was negative. Our findings indicate that hsp27 down-regulates TfR1-mediated iron uptake via stabilization of the cortical actin cytoskeleton rather than the classical IRP/IRE mode. The study may also imply that hsp27 protects cells from oxidative stress by reducing cellular iron uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call