Abstract

Local and systemic inflammatory conditions are characterized by the intracellular deposition of excess iron, which may promote tissue damage via Fenton chemistry. Because the Fenton reactant H(2)O(2) is continuously released by inflammatory cells, a tight regulation of iron homeostasis is required. Here, we show that exposure of cultured cells to sustained low levels of H(2)O(2) that mimic its release by inflammatory cells leads to up-regulation of transferrin receptor 1 (TfR1), the major iron uptake protein. The increase in TfR1 results in increased transferrin-mediated iron uptake and cellular accumulation of the metal. Although iron regulatory protein 1 is transiently activated by H(2)O(2), this response is not sufficient to stabilize TfR1 mRNA and to repress the synthesis of the iron storage protein ferritin. The induction of TfR1 is also independent of transcriptional activation via hypoxia-inducible factor 1alpha or significant protein stabilization. In contrast, pulse experiments with (35)S-labeled methionine/cysteine revealed an increased rate of TfR1 synthesis in cells exposed to sustained low H(2)O(2) levels. Our results suggest a novel mechanism of iron accumulation by sustained H(2)O(2), based on the translational activation of TfR1, which could provide an important (patho) physiological link between iron metabolism and inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.