Abstract

In this study, zein colloidal particles were self-assembled in aqueous ethanol through thermal treatment at 70 °C. The effect of heating, ethanol ratio and initial protein content on the physiochemical characteristics of zein nanoparticles were investigated. Thermal treatment was a necessary step to prepare nanoparticles with finer size and more homogenous distribution. The particle size decreased from 443.3 to 185.5 nm with initially ethanol concentration from 55% to 90% (v/v), whereas was inversely proportional to increased zein concentration (ranging from 125.6 to 199.1 nm for 20–100 mg/mL zein). The thermal treatment along with ethanol removal during zein nanoparticle generation induced the re-distribution of amino acid residues on the particle surface as indicated by the Raman spectroscopy and internal sulfhydryl groups determination. To further improve the stability and functional properties of these nanoparticles, gum arabic and sodium alginate were deposited as a secondary layer on zein nanoparticles mainly driven by electrostatic attraction. Sodium alginate at a polysaccharide/protein weight ratio of 1:10 showed the best improvement on the pH and ionic stability. The findings of this research provide a promising strategy and basic knowledge on optimizing zein-based delivery systems for food and pharmaceutical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.