Abstract

The heat generation connected to charging and discharging NaFePO4 (NFP) electrodes in sodium-ion batteries and LiFePO4 (LFP) electrodes in lithium-ion batteries is investigated. NFP-based electrodes are prepared with an electrochemical displacement method using LFP electrodes as the starting material. This approach guarantees identical particle size distribution, active material loading, binder, conductive additives, etc., of the electrodes. Consequently, differences in the heat generation rates are exclusively determined by the substitution of the alkali metal cation. Irreversible heat generation rates are computed from galvanostatic intermittent titration technique measurements at different C-rates. Reversible heat generation rates are determined by the temperature dependence of the equilibrium potential. For both, NFP and LFP electrodes, the total heat generation increases with increasing C-rate. The reversible heat is found to be significant at low C-rate, whereas the irreversible heat dominates at high C-rate. For both NFP and LFP electrodes, differences in the total heat generation rates during charging and discharging are mainly attributed to the reversible heat. The comparison between NFP and LFP reveals substantially larger heat generation rates for NFP electrodes, which are mainly caused by larger limitations of charge transfer reaction and the solid-state diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call