Abstract
In this work the heat generation in porous LiCoO2 based electrodes for lithium ion batteries is studied in detail. Irreversible heat generation rates due to ohmic resistance, charge transfer and mass transport limitations as well as the reversible heat of the electrode reaction are determined from electrochemical measurements as a function of the C-rate, the temperature and the lithium concentration in the active material. The results show that all the individual heat sources contribute significantly to the total heat generation in the electrode. The heat sources are functions of the C-rate and the temperature as well as the lithium concentration in the active material. The reversible heat contribution was found to be most significant at higher temperatures und lower C-rates, which tend to reduce kinetic limitations and irreversible heats, respectively. The heat generation rate due to mass transport limitations is most influential among the irreversible heats, whereas the ohmic contribution shows a minor impact. The total heat generation was found to increase with increasing C-rate and decreasing temperature. Furthermore, the heat generation is significantly reduced for charging compared to discharging due to the intrinsic asymmetry of the reversible heat and larger kinetic limitations for lithiation compared to delithiation of LiCoO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.