Abstract

Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10−4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K−1(TMO-mol)−1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK−1(H2O-mol)−1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call