Abstract
Interactions between heat and mass diffusion determine growth mechanisms during ice crystallization. The effects of heat and mass transfer on ice growth in pure water and magnesium sulfate solution were investigated by studying the evolution of the gradient of the refractive index using color Schlieren deflectometry. For pure water, the gradient of the refractive index of water was used to calculate the temperature and therefore the local supersaturation. Its effect on the ice crystal growth rate and morphology was studied. It was found that, for local supersaturations greater than 2.8, the morphology was dendritic ice, with a growth rate 2 orders of magnitude higher than that for layered growth. During dendritic growth, 3–16% of the heat of crystallization diffused to the liquid side, which is counter to current understanding. At the transition (between the time of partial melting of the dendritic ice and the beginning of the layered ice growth), a higher supersaturation than that responsible for layered...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.