Abstract

Understanding the effects of soluble impurities or suspended particles on ice growth is of significant importance from Earth science to materials engineering. Ions are common impurities with ice in a wide range of fields, but their effects on ice growth remain largely elusive. Here, we studied the ion-specific effects on single ice crystal growth in various electrolyte and polyelectrolyte solutions and found F- and NH4+ show remarkable abilities of inducing single ice crystals to form hexagonal shapes and reducing the growth rates of ice crystals. Molecular dynamics simulations reveal the accumulation of F- around the ice/solution interface that plays a key role in the shapes and growth rates of single ice crystals. The understanding of ion-specific effects on ice growth opens up more possibilities for improving related fields, e.g., freeze desalination and cryopreservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call