Abstract

The production of viable functional probiotics presupposes stability of strain features in the final product. In previous studies, Enterococcus faecium HL7 was found to have relatively higher cell viability after freeze-drying and the long-lasting resistance to heat (60°C) as well as higher antimicrobial activities against some of fish and human pathogens among isolated strains. For heat adaptation, E. faecium HL7 cells were exposed to 52°C for 15min. After adaption, slight decreases of unsaturated membrane fatty acid ratios were confirmed through fatty acid analysis. Upon subsequent exposure to various stress conditions such as H2O2 (0.01%), ethanol (20%), acid (pH3), and alkali (pH12), the survival rate of heat-adapted HL7 was 103-105-fold higher than that of non-adapted one. These results highlight the potential of preconditioning treatments for maximizing survival of probiotic bacteria during development of probiotic functional foods. The cross-protection afforded by acid against thermal stress may indicate that certain common protective mechanisms are induced by both heat and acid stress. These results can be applied to enhancing the cell viability during live cell formulation of E. faecium HL7 to be used as a potential probiotics in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call