Abstract

This paper is devoted to the problem of heart rate regulation using a model-based control strategy and a realtime damped parameter estimation scheme. The controller is a time-varying integral sliding mode controller. A recursive damped parameter estimation method is also developed, by incorporation of a weighting upon the one-step parameter variation, which in contrast to the conventional parameter estimation schemes (e.g. recursive least squares (RLS) method) can avoid the occurrence of the so-called blowup phenomena. The calculated control signals are transmitted to the subjects employing a synchronized biofeedback mechanism. The proposed control and estimation scheme were experimentally verified using twelve healthy male subjects and the results demonstrated that the designed scheme is able to regulate the HR of the exercising subjects to a predetermined HR profile preventing overshooting in the HR responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.