Abstract
BackgroundIn intensive care units (ICUs), accurate mortality prediction is crucial for effective patient management and resource allocation. The Simplified Acute Physiology Score II (SAPS-2), though commonly used, relies heavily on comprehensive clinical data and blood samples. This study sought to develop an artificial intelligence (AI) model utilizing key hemodynamic parameters to predict ICU mortality within the first 24 h and assess its performance relative to SAPS-2. MethodsWe conducted an analysis of select hemodynamic parameters and the structure of heart rate curves to identify potential predictors of ICU mortality. A machine-learning model was subsequently trained and validated on distinct patient cohorts. The AI algorithm’s performance was then compared to the SAPS-2, focusing on classification accuracy, calibration, and generalizability. Measurements and main resultsThe study included 1298 ICU admissions from March 27th, 2015, to March 27th, 2017. An additional cohort from 2022 to 2023 comprised 590 patients, resulting in a total dataset of 1888 patients. The observed mortality rate stood at 24.0%. Key determinants of mortality were the Glasgow Coma Scale score, heart rate complexity, patient age, duration of diastolic blood pressure below 50 mmHg, heart rate variability, and specific mean and systolic blood pressure thresholds. The AI model, informed by these determinants, exhibited a performance profile in predicting mortality that was comparable, if not superior, to the SAPS-2. ConclusionsThe AI model, which integrates heart rate and blood pressure curve analyses with basic clinical parameters, provides a methodological approach to predict in-hospital mortality in ICU patients. This model offers an alternative to existing tools that depend on extensive clinical data and laboratory inputs. Its potential integration into ICU monitoring systems may facilitate more streamlined mortality prediction processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.