Abstract

Environmental conditions affect many plant traits such as biochemistry, physiology, morphology, and even their distribution around the world. Human activities have increased greenhouse gas emissions, which will promote a global rise in temperatures. The impact of climate change on natural vegetation and crops is difficult to predict, making it necessary to conduct experiments that mimic potential future climate conditions. Here, oilseed rape has been grown under environmental conditions that reproduce severe and intermediate climate change, setting the current climatic conditions as a control, with the main objective of evaluating the impact of climate change on the health status of this plant of agronomic interest. For such a purpose, two approaches (invasive and non-invasive) have been applied. Invasive quantitative measurements are based on the absorbance of biochemical compounds. Non-invasive methods such as thermal, multicolor fluorescence, and hyperspectral reflectance imaging sensors rely on the spectral properties of the plants. The results revealed that climate change induced lipid peroxidation, as well as alterations in pigment composition, transpiration, photosynthesis, and secondary plant metabolism. Those changes were more drastic the more severe the climatic condition imposed. Novel vegetation indices obtained from hyperspectral reflectance and specifically tailored to detect stress in brassicas correlated with physiological traits such as lipid peroxidation and secondary plant metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call