Abstract

The objective of the present study was to investigate the level of 16 PAHs in fruit juice samples (orange, apple, peach, pineapple, and mango) with three different packages (PET bottle, Tetra Pak, and canned packaging) by using MSPE/GC-MS (magnetic solid-phase extraction and gas chromatography-mass spectrometry) method. In this method limit of detection (LOD), and limit of quantitation (LOQ), and recovery were 0.030-0.280 μg/L, 0.090-0.840 μg/L, and 94.8-102%, respectively. Our results showed the median of total PAHs and PAH4 (in all samples) were 7.67 ± 3.19 and 0.370 ± 0.160 μg/L, respectively. The median of BaP in samples was )0.060 ± 0.030 μg/L( lower than the standard level (0.200 μg/L in drinking water) of US Environmental Protection Agency (USEPA). Also, our results showed that pineapple juice had a maximum median of total PAHs of 12.4 ± 4.84 μg/L and mango juice had a minimum median of total PAHs of 5.17 ± 1.24 μg/L. Additionally, canned packaging had a maximum average total PAHs of 10.6 ± 5.22 μg/L and PET bottles had a minimum average total PAH of 5.25 ± 2.03 μg/L. A heat map approach was also used to cluster samples. The Monte Carlo results indicated that the estimated daily intake (EDI) rank order was Na > B(g)P > Ch > I(cd)P > B(b)F > Ph > B(k)F > F > Ace > Fl > B(a)P > B(a)A > P >A. The Monte Carlo simulation (MCS) results showed the incremental lifetime cancer risk (ILCR) at the 95th percentiles for adults and children was 4.91 × 10-7 and 9.12 × 10-7, respectively. It is concluded that the concentration of PAHs compounds in Iranian fruit juices is lower than the existing standards, and in terms of the risk of carcinogenesis, it does not threaten the human health (< 10-6).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call