Abstract

The regeneration of old industrial buildings produces considerable construction dust, thereby seriously threatening the occupational health of construction workers. The existing articles concerning the exposure and health impacts of reconstruction dust in enclosed spaces are limited, but this research field has received increasing attention. In this study, multi-process during the demolition and reinforcement stages of a reconstruction project were monitored to determine the respirable dust concentration distribution. A questionnaire survey was conducted to obtain the exposure parameters of reconstruction workers. Moreover, a health damage assessment system for the reconstruction process of old industrial buildings was established by applying the disability-adjusted life year and human capital method to explore the health damage caused by the generated dust at different stages to the construction personnel. The assessment system was applied to the reconstruction stage of an old industrial building regeneration project in Beijing to obtain dust health damage values for different work types and to conduct comparative analysis. The results indicate that there are significant differences in the dust concentration and health damage at different stages. During the demolition stage, the manual demolition of concrete structures has the highest dust concentration, reaching 0.96mg/m3. This exceeds the acceptable concentration by 37%, and the health damage cost is 0.58 yuan per person per day. In the reinforcement stage, the dust concentration generated by mortar/concrete mixing is the highest, but the risk level is acceptable. The health damage cost of concrete grinding, which is 0.98 yuan per person per day, is the highest. Therefore, it is necessary to strengthen the protective facilities and improve the reconstruction technology to reduce dust pollution. The results of this study can help in improving the existing dust pollution control measures at construction sites to reduce the risk of dust hazards during reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call