Abstract
Polypropylene (PP) capillary-channeled polymer (C-CP) fibers were modified by adsorption of a head group-functionalized lipid to generate analyte-specific surfaces for application as a stationary phase in high performance liquid chromatography (HPLC) or solid phase extraction (SPE). The aliphatic moiety of the lipid adsorbs strongly to the hydrophobic PP surface, with the hydrophilic active head groups orienting themselves toward the more polar mobile phase, thus allowing for interactions with the desired solutes. Initial proof-of-concept was achieved by adsorbing a biotin-poly(ethylene glycol)-functionalized lipid to the surface of the PP C-CP fibers. Surface modification and uniformity was evaluated by binding streptavidin labeled with Texas Red (SAv-TR) to the biotin moiety. Isolation of SAv-TR from a mixture in neat buffer and in cleared lysate demonstrated the capability of the modified fibers to extract an analyte of interest from a complex viscous mixture. It is believed that this surface modification approach is generally applicable to a diversity of selective protein immobilization applications, including clinical diagnostics and preparative scale HPLC on C-CP fibers as well as to other hydrophobic supports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.