Abstract

BackgroundSwinging limb lameness is defined as a motion disturbance ascribed to a limb in swing phase. Little is known about its biomechanics in dogs, particularly about the body motions that accompany it, such as vertical head and pelvic motion asymmetry. The aim of this study was to describe the changes in vertical head and pelvic motion asymmetry in dogs with induced swinging limb motion disturbance, mimicking a swinging limb lameness. Fore- and hind-limb lameness was induced in ten sound dogs by placing a weight (200 g) proximal to the carpus or tarsus, respectively. Marker-based motion capture by eight infrared light emitting video cameras recorded the dogs when trotting on a treadmill. Body symmetry parameters were calculated, including differences between the two highest positions of the head (HDmax) and pelvis (PDmax) and between the two lowest positions of the head (HDmin) and pelvis (PDmin), with a value of zero indicating perfect symmetry.ResultsInduction of swinging forelimb lameness showed significant changes in HDmax (median and range: sound 1.3 mm [− 4.7 to 3.1], in the left side − 28.5 mm [− 61.2 to − 17.9] and in the right side 20.1 mm [− 4.4 to 47.5]) and, induction of swinging hind limb lameness showed significant changes in PDmax (sound 2.7 mm [− 7.4 to 7.2], in the left side − 10.9 mm [− 22.4 to 0.5] and in the right side 8.6 mm [− 3 to 30]), as well as an increased hip movement asymmetry (sound 1.6 mm [− 8.6 to 19.9], in the left side − 18.1 mm [− 36.7 to 5.4] and in the right side 15 mm [− 20.7 to 32.1]) (P < 0.05).ConclusionsInduced swinging fore- and hind limb lameness resulted in significant increased asymmetry of the maximal vertical displacement movement of the head and pelvis, due to decreased lifting of the head in forelimb lameness and of the pelvis in hind limb lameness. The results suggest that asymmetry of the maximal vertical displacement of the head and pelvis (i.e. lifting) is a key lameness sign to evaluate during examination of swinging limb lameness.

Highlights

  • Swinging limb lameness is defined as a motion disturbance ascribed to a limb in swing phase

  • There were no significant changes in HDmin or PDmin. These results indicate that swinging forelimb lameness induction resulted in a reduced maximum position of the head after the lame forelimb pushoff and during the swinging of the affected forelimb, and that swinging hind limb lameness induction resulted in a reduced maximum position of the pelvis after push-off, and swinging of the affected hind limb

  • This, together with the results from our previous study showing a significant increase in the HDmin and PDmin during supporting limb lameness [31], confirms that changes in the head, pelvic and hip vertical movement can serve as good indicators for both supporting and swinging fore- and hind limb lameness, respectively, and that changes in head or pelvis lifting seem to be characteristic of swinging limb lameness, while changes in head or pelvis lowering seem to be characteristic of supporting limb lameness, at least in an experimental situation

Read more

Summary

Introduction

Swinging limb lameness is defined as a motion disturbance ascribed to a limb in swing phase. Other causes of swinging limb lameness are specific joint disorders such as ankylosis or those causing elbow, shoulder, hip or stifle pain; where specific angular motion changes occur on the affected limb, for example, abnormal joint flexion–extension, rotation, abduction–adduction and protraction-retraction [3,4,5,6,7,8,9,10,11,12,13,14]. Kinematic studies have shown differences in stride length and duration, joint velocity and joint range of motion between sound dogs and dogs with different types of clinical conditions of the elbow, hip and stifle [3, 6, 7, 9,10,11, 13, 26]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.