Abstract

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.

Highlights

  • The acetylation of specific lysine residues influences the activity of many proteins including histones and this process has been shown to be a central mechanism controlling gene expression and cell signaling events

  • We have employed a genetic approach to investigate the extent to which HDAC4 contributes to global changes in protein acetylation in brain

  • Hdac4 knock-out (KO) mice are viable until early postnatal life [17], it was possible to compare the pattern of protein acetylation between wild type (WT) and HDAC4 null brains from neonates at three days of age (P3), an age at which HDAC4 is highly expressed [8]

Read more

Summary

Introduction

The acetylation of specific lysine residues influences the activity of many proteins including histones and this process has been shown to be a central mechanism controlling gene expression and cell signaling events. Reversible lysine acetylation is controlled by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs) [2]. The 18 human HDACs can be clustered into four different classes, based on their sequence homology to the yeast orthologus Rpd, Hda and Sir. The class I HDACs have high homology to Rpd and include HDAC1, -2, -3- and -8. Class III HDACs have high homology to yeast Sir and comprise the sirtuins: SIRT 1-7. Class IV contains only HDAC11, which shares homology with both class I and II enzymes [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call