Abstract
Most primary sensory neurons (PSNs) generate a slowly-activating inward current in response to membrane hyperpolarization (Ih) and express HCN1 along with additional isoforms coding for hyperpolarization-activated channels (HCN). Changes in HCN expression may affect the excitability and firing patterns of PSNs, but retinal and inner ear PSNs do not fire action potentials, suggesting HCN channel roles may extend beyond excitability and cell firing control. In patients taking Ih blockers, photopsia triggered in response to abrupt changes in luminance correlates with impaired visual signal processing via parallel rod and cone pathways. Furthermore, in a mouse model of inherited retinal degeneration, HCN blockers or Hcn1 genetic ablation may worsen photoreceptors' demise. PSN's use of HCN channels to adjust either their firing rate or process signals generated by sensory transduction in non-spiking PSNs indicates HCN1 channels as a versatile tool with a novel role in sensory processing beyond firing control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.