Abstract

ABSTRACT Gridding operation, which is to map non-uniform data samples on to a uniformly distributed grid, is one of the key steps in radio astronomical data reduction process. One of the main bottlenecks of gridding is the poor computing performance, and a typical solution for such performance issue is the implementation of multicore CPU platforms. Although such a method could usually achieve good results, in many cases, the performance of gridding is still restricted to an extent due to the limitations of CPU, since the main workload of gridding is a combination of a large number of single instruction, multidata stream operations, which is more suitable for GPU, rather than CPU implementations. To meet the challenge of massive data gridding for the modern large single-dish radio telescopes, e.g. the Five-hundred-meter Aperture Spherical radio Telescope, inspired by existing multicore CPU gridding algorithms such as Cygrid, here we present an easy-to-install, high-performance, and open-source convolutional gridding framework, HCGrid, in CPU-GPU heterogeneous platforms. It optimizes data search by employing multithreading on CPU, and accelerates the convolution process by utilizing massive parallelization of GPU. In order to make HCGrid a more adaptive solution, we also propose the strategies of thread organization and coarsening, as well as optimal parameter settings under various GPU architectures. A thorough analysis of computing time and performance gain with several GPU parallel optimization strategies show that it can lead to excellent performance in hybrid computing environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.