Abstract

We demonstrate the practicability of cavity-enhanced Raman spectroscopy (CERS) with a folded multipass cavity as a unique tool for the detection of hazardous gases in the atmosphere. A four-mirror Z-sharped multipass cavity results in a greatly extended laser-gas interaction length to improve the Raman signal intensity of gases. For Raman intensity maximization, the optimal number of intracavity beams of a single reflection cycle is calculated and then the cavity parameters are designed. A total of 360 intracavity beams are realized, which are circulated four times in the cavity based on the polarization. ppb-Level Raman gas sensing at atmospheric pressure for several typical explosive gases and toxic gases in ambient air, including hydrogen (H2), methane (CH4), carbon monoxide (CO), hydrogen sulfide (H2S), and chlorine (Cl2), is achieved at 300 s exposure time. Our CERS apparatus, which can detect multiple gases simultaneously with ultrahigh sensitivity and high selectivity, is powerful for detecting hazardous gases in the atmosphere, and it has excellent potential for environmental safety monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call