Abstract

Antibiotics have emerged as a well-known representative of pharmaceuticals and personal care products (PPCPs) by causing public health and environmental problems due to their potential toxicity. β-lactams are the most commonly used antibiotics in the world. This study used zebrafish embryos to evaluate the toxicity of β-lactams. The results showed that 23 β-lactam compounds induced malformation and death in a concentration–response manner. Moreover, this study established and validated quantitative structure–toxicity relationship (QSTR) models for the toxicity of β-lactams in zebrafish. These models performed well and fast in the prediction of the acute toxicity of β-lactams. Structural interpretation indicated that the β-lactam ring, the thiazolidine/dihydrothiazine rings, the side chains, and spatial configuration are the main factors responsible for the toxicity of β-lactams. The results from our previous studies and this study also revealed that the potential biological risks caused by β-lactams and their degradation products could not be ignored. This study provided important data for further environmental risk assessment of β-lactams and regulatory purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call