Abstract
We consider the problem of modeling and clustering heterogeneous event data arising from coupled conflict event and social media data sets. In this setting conflict events trigger responses on social media, and, at the same time, signals of grievance detected in social media may serve as leading indicators for subsequent conflict events. For this purpose we introduce the Hawkes Binomial Topic Model (HBTM) where marks, Tweets and conflict event descriptions are represented as bags of words following a Binomial distribution. When viewed as a branching process, the daughter event bag of words is generated by randomly turning on/off parent words through independent Bernoulli random variables. We then use expectation–maximization to estimate the model parameters and branching structure of the process. The inferred branching structure is then used for topic cascade detection, short-term forecasting, and investigating the causal dependence of grievance on social media and conflict events in recent elections in Nigeria and Kenya.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.