Abstract

We construct a ‘Hausdorff measure’ of finite co-dimension on the Wiener space. We then extend the Federer co-area Formula to this Wiener space for functions with the sole condition that they belong to the first Sobolev space. An explicit formula for the density of the images of the Wiener measure under such functions follows naturally from this. As a corollary, this yields a new and easy proof of the Kree-Watanabe theorem concerning the regularity of the images of the Wiener measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.