Abstract

Polysaccharide-functionalized gold nanoparticles (Polysaccharide-Au NPs) with high stability were successfully prepared by a straightforward method. Notably, the Au (III) ion acts as a strong Lewis acid to facilitate glycosidic bond breaking. Subsequently, the polysaccharide conformation was transformed to an open-chain form, exposing highly reduced aldehyde or ketone groups that reduce Au (III) to Au (0) crystal species, further growing into Au NPs. As-prepared Au NPs displayed excellent stability over a longer storage period (more than 70 days), a wide range of temperatures (25–60 °C), and pH range (3−11), varying concentrations (0–200 mM) and types of salt ions (Na+, K+, Ca2+, Mg2+), and glutathione solutions (5 mM). More interestingly, polysaccharide-Au NPs retained the antioxidant activity of polysaccharides and reduced oxidative damage at the cellular level through decreased reactive oxygen species (ROS) production. The intracellular levels of ROS pretreated with polysaccharide and polysaccharide-Au NPs were decreased 53.12–75.85 % compared to the H2O2 group, respectively. Therefore, the green synthesized Au NPs from natural active polysaccharides exhibit potential applications in biomedical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call