Abstract

AbstractGrowth and survival of stocked Sander spp. fingerlings can be influenced by timing of stocking in relation to the peak in density of larval gizzard shad Dorosoma cepedianum. However, coordinating stockings to coincide with peaks in gizzard shad density is difficult due to temporal variation in spawn timing among reservoirs. We used weekly estimates of larval gizzard shad density and length distributions to identify dates of peak hatching and peak total density in Ohio reservoirs and to explore the influence of spring water temperature regimes on timing of peak larval density. Gizzard shad density peaked over 21–32 d among reservoirs but generally varied by 12 d or less among years for any given population. Density peaks were driven by hatching, as larvae smaller than 10 mm accounted for a majority of the gizzard shad collected on the peak date. Peaks in gizzard shad density corresponded to water temperatures of 17–22°C and occurred most frequently when water temperatures had been stable or rising. Reservoirs in the southern portion of the state were 2–5°C warmer than northern reservoirs throughout the spring; thus, gizzard shad spawning and date of peak larval density were earliest in southern reservoirs and became progressively later for populations in more northerly reservoirs. Historical stocking dates for fingerling walleyes S. vitreus and saugeyes (sauger S. canadensis × walleye) in Ohio reservoirs indicated that southern reservoirs were often stocked after the expected peak in gizzard shad density and northern reservoirs were stocked before the peak. A statewide approach to stocking that incorporates latitudinal variations in gizzard shad hatch timing whereby southern reservoirs are stocked earliest would better align stockings with peak gizzard shad density, potentially improving survival of fingerling walleyes and saugeyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call