Abstract
EEG-based emotion recognition has gradually become a new research direction, known as affective Brain-Computer Interface (aBCI), which has huge application potential in human-computer interaction and neuroscience. However, how to extract spatio-temporal fusion features from complex EEG signals and build learning method with high recognition accuracy and strong interpretability is still challenging. In this paper, we propose a hybrid attention spatio-temporal feature fusion network for EEG-based emotion recognition. First, we designed a spatial attention feature extractor capable of merging shallow and deep features to extract spatial information and adaptively select crucial features under different emotional states. Then, the temporal feature extractor based on the multi-head attention mechanism is integrated to perform spatio-temporal feature fusion to achieve emotion recognition. Finally, we visualize the extracted spatial attention features using feature maps, further analyzing key channels corresponding to different emotions and subjects. Our method outperforms the current state-of-the-art methods on two public datasets, SEED and DEAP. The recognition accuracy are 99.12% ± 1.25% (SEED), 98.93% ± 1.45% (DEAP-arousal), and 98.57% ± 2.60% (DEAP-valence). We also conduct ablation experiments, using statistical methods to analyze the impact of each module on the final result. The spatial attention features reveal that emotion-related neural patterns indeed exist, which is consistent with conclusions in the field of neurology. The experimental results show that our method can effectively extract and fuse spatial and temporal information. It has excellent recognition performance, and also possesses strong robustness, performing stably across different datasets and experimental environments for emotion recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.